Inelastic collisions of optically trapped metastable calcium atoms
نویسندگان
چکیده
منابع مشابه
Inelastic collisions in optically trapped ultracold metastable ytterbium.
We report measurement of inelastic loss in dense and cold metastable ytterbium (Yb[3P2]). Use of an optical far-off-resonance trap enables us to trap atoms in all magnetic sublevels, removing m-changing collisional trap loss from the system. Trapped samples of Yb[3P2] are produced at a density of 2 x 10(13) cm(-3) and temperature of 2 microK. We observe rapid two-body trap loss of Yb[3P2] and m...
متن کاملHyperfine Spectroscopy of Optically Trapped Atoms
We perform spectroscopy on the hyperfine splitting of Rb atoms trapped in far-off-resonance optical traps. The existence of a spatially dependent shift in the energy levels is shown to induce an inherent dephasing effect, which causes a broadening of the spectroscopic line and hence an inhomogeneous loss of atomic coherence at a much faster rate than the homogeneous one caused by spontaneous ph...
متن کاملQuantum memory with optically trapped atoms.
We report the experimental demonstration of quantum memory for collective atomic states in a far-detuned optical dipole trap. Generation of the collective atomic state is heralded by the detection of a Raman scattered photon and accompanied by storage in the ensemble of atoms. The optical dipole trap provides confinement for the atoms during the quantum storage while retaining the atomic cohere...
متن کاملUltracold collisions of metastable helium atoms
We report scattering lengths for the Σg , Σu and Σg adiabatic molecular potentials relevant to collisions of two metastable 2 3S helium atoms as a function of the uncertainty in these potentials. These scattering lengths are used to calculate experimentally observable scattering lengths, elastic cross sections and inelastic rates for any combination of states of the colliding atoms, at temperat...
متن کاملResonant control of elastic collisions in an optically trapped fermi gas of atoms.
We have loaded an ultracold gas of fermionic atoms into a far-off resonance optical dipole trap and precisely controlled the spin composition of the trapped gas. We have measured a magnetic-field Feshbach resonance between atoms in the two lowest energy spin states, /9/2,-9/2> and /9/2,-7/2>. The resonance peaks at a magnetic field of 201.5+/-1.4 G and has a width of 8.0+/-1.1 G. Using this res...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2013
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.88.063639